Mastering Machine Learning With scikit-learn

Mastering Machine Learning With scikit-learn

Author: Gavin Hackeling
ISBN-10: 1783988363
Year: 2014
Pages: 238
Language: English
File size: 3.68 MB
File format: PDF
Category: Python Datebases

Mastering Machine Learning With scikit-learn

This book examines machine learning models including logistic regression, decision trees, and support vector machines, and applies them to common problems such as categorizing documents and classifying images. It begins with the fundamentals of machine learning, introducing you to the supervised-unsupervised spectrum, the uses of training and test data, and evaluating models. You will learn how to use generalized linear models in regression problems, as well as solve problems with text and categorical features.
You will be acquainted with the use of logistic regression, regularization, and the various loss functions that are used by generalized linear models. The book will also walk you through an example project that prompts you to label the most uncertain training examples. You will also use an unsupervised Hidden Markov Model to predict stock prices.
By the end of the book, you will be an expert in scikit-learn and will be well versed in machine learning

What You Will Learn

Review fundamental concepts including supervised and unsupervised experiences, common tasks, and performance metrics
Predict the values of continuous variables using linear regression
Create representations of documents and images that can be used in machine learning models
Categorize documents and text messages using logistic regression and support vector machines
Classify images by their subjects
Discover hidden structures in data using clustering and visualize complex data using decomposition
Evaluate the performance of machine learning systems in common tasks
Diagnose and redress problems with models due to bias and variance

Mastering Machine Learning With scikit-learn FREE DOWNLOAD

OPEN BOOK IT,free IT book download.

Download PDF

Author: jeff

Leave a Reply

Your email address will not be published. Required fields are marked *